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The collision cross section of lithium atoms is determined by generalizing empiri- 
cal data on the ~ and % of Na, K, Rb, and Cs vapors and quantum calculations of 
the potential curves of Li2. The ~i and %1 of Li vapors are calculated. 

The lack of published empirical data on the viscosity coefficient and thermal conduc- 
tivity of gaseous lithium is explained by the considerable technical difficulties of working 
with lithium at high temperatures. Due to the low vapor pressures, investigations should 
be conducted at T ~I200~ i.e., they should begin with temperatures at which experiments 
with other alkali metals are concluded. Studies of the viscosity and heat conductivity of 
Na, K, Rb, and Cs vapors have been conducted by many authors using various experimental 
methods. The results obtained in these studies are generally in agreement [i]. Table 1 
shows collision cross sections found by averaging the bulk of the empirical data. 

The error in the determination of o~ is 3-5% and depends on the metal and the tempera- 
ture [i]. 

i. Determination of the Cross Section of Lithium Atoms from Empirical Data on the 
Transport Properties of the Vapors of Other Alkali Metals. The information available on 
transport properties permits several conclusions as to the features of change of cross 

2 sections oi in vapors of alkali metals and makes it possible, on the basis of these conclu- 
sions, to determine the cross section of lithium atoms. Since hydrogen atoms interact in 
a manner similar to the atoms of alkali metals, we should include hydrogen in our search 
for laws describing cross-sectional behavior. There is no data on the cross sections of 
hydrogen atoms. Usually, the cross sections calculated by Vanderslice [2] are used. He 
determined the IZ curve by combining the results calculated by Dalgarno [3] and spectro- 
scopic data. For the mE curve, however, the data that was used [3] was inaccurate [4]. In 
our calculations, we used the more recent data of Kolos [5], which is very accurate and 
which agrees with the empirical data (within the limits of the experiment error). The 
approximation method of Hirschfelder and Eliason [6] was used to calculate the cross sections. 

The potential curves [5] for T=700-1500~ are approximated byothe exponents U(r) = 
--198 exp(--2.858r) and U(r) = 111.7 exp(--3.03Or) (U in eV, r in A). Table 1 shows 
curves calculated from these values and the tables of hydrogen-atom cross sections from [7, 
8]. They exceed the values of the cross sections in [2] by ~i0%. 

The covalent radius of the atom was chosen as the argument of the sought relation. 
According to [9], the value of Rc@v for H, Li~ Na, K, Rb, and Cs atoms is equal to 0.31, 
1.34, 1.54, 1.96, 2.11, and 2.25 A, respectively. It turns out that the calculated H cross 

TABLE i. Cross Sections of Atoms ~, ~2 

T, K H Na K Rb Cs 

800 
900 

1000 
1100 
1200 
1300 
1400 
1500 

6,85 
6,64 
6,46 
6,29 
6,14 
6,01 
5,89 
5,77 

20,1 
19,5 
19,0 
18,5 
18,0 
17,6 
17,2 
1"6,8 

30,3 
28,7 
27,2 
26,0 
24,9 
23,9 
23,1 
22,3 

33,3 
31,6 
30,2 
28,9 
27,8 
26,8 
25,9 
25,1 

36,8 
35,5 
34,4 
33,3 
32,3 
31,4 
30,6 
29,8 
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TABLE 2. Coefficients of the Function 21(Rcov) = 
a +bR~ov and Interpolational Lithium Cross Sections 

800 
1000 
1200 
1500 

6,15 
5,95 
5,69 
5,37 

6,10 
5,53 
5,11 
4,61 

0,57 
0,34 
0.65 
0,97 

0,14 
0,08 
0,16 
0,24 

17,110,7 
15,9___0,4 
14,9--+0,7 
13,7----6_I ,0 

sections and the averaged empirical cross sections of Na, K, Rb, and Cs atoms (Table i) at 
the same temperature are described well by the linear function 

2 u~(Rco~ = a § bRco v (1 )  

Coefficients a and b of this function found by the least-squares method are shown in 
Table 2 for T = 800, I000, 1200, and 1500~ Equation (i) makes it possible to compute cross 

2 
sections in lithium vapors. The quantity oi = 15.9 A= at T = 1000~ with a standard devia- 
tion here of 0.4 ~2 (see Table 2). 

Performing the calculations using the o~ of hydrogen found by Vanderslice decreases 
the lithium cross section by about 2%, while the latter is increased by about 0.5% when 
the cross sections determined by the asymptotic method are used. The quadratic function 

2 
o~(Rcov) gives the best average and the lowest error of the lithium ~i. However, since the 
cross section changes only by several hundredths of a percent, Eq. (I) is sufficiently 
reliable. 

2. Theoretical Methods of Determining the Lithium Cross Section. All known tables of 
the viscosity and thermal conductivity of lithium vapors [10-14] are based on theoretically 
calculated cross sections. Here, approximation methods were used to determine the potential 
curves of the atom interactions. The authors estimate the error of the cross sections to be 
30%. The calculated cross sections are larger than those found from viscosity and heat con- 
ductivity experiments~ the difference between these results increasing from cesium to sodium. 
For example, at T=I000~ the calculated Cs cross sections are 20% larger than the empirical 
values. The difference is 40% in the case of sodium. The theoretical Li cross sections 
exceed the cross sections determined from Eq. (i) by an even greater amount. Such large 
discrepancies are due mainly to the crudity of the methods used to determine the potential 
curve for the triplet state. There is spectroscopic data for the singlet state which makes 
it possible to determine the potential curve close to the equilibrium state, and it is 
necessary only to extrapolate into the region of low energies (large spacings). This has 
been done by various semiempirical methods [15, 16] and from the curve for hydrogen [17] 
using the method of reduced potential curves [18], which takes into account polarization of 
atomic shells. Thus, the difference in the cross sections obtained by different authors 
for the singlet state does not exceed 25%. As a result, the difference in the total 
cross sections is no more than 10%. 

There is no empirical data for the triplet state. In [17] 7 the results of which were 
used by Bonilla in compiling tables [i0, ii], the potential curve was obtained by the same 
method using the same decay constant as for the curve of the singlet state~ although the 
polarization of the shells is qualitatively different. 

In the calculations in [15, 16], the curve was found as a first approximation by the 
Gaitler--London method. As is well known, this method produces results which agree only 
qualitatively with the empirical data. 

In [14], the potential curves were determined by the asymptotic method. In calculating 
the cross sections, the authors ignored dispersion interactions. However, dispersion forces 
play a very large role in the case of atoms of alkali metals. This is shown by the large 
values of the Van der Waals coefficients, exceeding by three orders the values of the same 
coefficients for the hydrogen atom [19]. If the formulas and values of the constant in [14] 
are used, then the potential of the exchange forces for the atomic spacings calculated in 
the same work is only 20-40% greater than the potential of the dispersion forces. According 
to more accurate quantum-mechanical calculations [20]~ in the singlet state the exchange 
potential reaches only 0.9 the potential of the dispersion forces; in the triplet state, 
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TABLE 3. Cross Sections of Atoms and the 
Viscosity Coefficient and Thermal Conduc- 
tivity of the Atomic Component of Lithium 
Vapors 

1000 
1100 
!200 
1300 
1400 
1500 
1600 
1700 
1800 
1900 
2000 

o~, ~ �9 SeC %~'I04' 
0,. I o,, Pa W/m- deg 

15,5 
15,2 
14,9 
14,6 
14,4 
14,1 
13,9 
13,7 
13,5 
13,3 
13,2 

143 
153 
163 
173 
183 
193 
202 
211 
221 
230 
239 

644 
690 
736 
780 
824 
867 
909 
951 
992 

1033 
1073 

the former exceeds the latter only at spacings less than, and close to, the equilibrium 
spacing. Thus, dispersion forces cannot be ignored in calculations of the cross sections 
of lithium atoms or, in general, the atoms of alkali metals. 

An error was made in the calculations in [14]: the atomic spacings for a viscous cross 
section in the triplet state were calculated using the formula for a diffuse cross section, 
so that the cross section in the triplet state turned out to be 30% smaller. 

Attempts have been made to correct theoretical cross sections with allowance for experi- 
mental data. For example, the effective cross sections recommended in [12] and used in this 
book to compile viscosity and heat conductivity tables were obtained by combining theoretical 
and empirical data. However, the empirical data accumulated up to that time was not sub- 
stantial, and the correction of the cross sections was only approximate. 

3. Use of Quantum-Mechanical Potential Curves. The highly approximate character of 
the above-examined methods of calculating the cross sections of lithium atoms becomes all 
the more clear if the results of quantum-mechanical calculations of Li2 potential curves 
are used. In recent years~ these calculations have reached a degree of accuracy such that 
the binding energy of lithium atoms can be reliably computed not only for spacings close to 
equilibrium, but also for large spacings -- when dispersion forces become decisive. Let us 
use the results of recent works: [20] for the states IZ~ and ~Z~, and [21] for 3Z~ Both 
works employed the multiconfigurational method of a self=consistent field (MC SCF)~" with 
optimization of the valence configurations (OVC). For T = 500-6500~ the data in [21] can 
be approximated by the exponent U(r) =1296.5 exp (--r/0.3123). The data in [20] for the 
singlet state can be approximated by the exponent U(r) =-50.55 exp (--r/0.8527) (for T=600- 
7000~ Cross sections calculated from the curves using the tables of Monchik [7] and 
Brokaw [8] are shown in Table 3. The value of o~ changes within • when the data in [21] 
is approximated in other temperature intervals. The error of the resulting cross sections 
is the sum of the error of the potential curves and the error of the method used to calcu- 
late the cross sections from the curves. Its maximum value may be determined • The 
cross sections of lithium atoms in the ground state calculated from the curves in [20] and 
determined from the spectroscopic data in [22] for temperatures at which cross sections 
could be calculated from the second curve differ by less than 0.6%, which is evidence of 
the great accuracy of the theoretical potential curve. As shown by the calculations in 
[23], the error of the Hirschfelder--Eliason approximatfon method does not reach 5% under 
our conditions (T < 2000~ The viscosity coefficient and thermal conductivity of the 
atomic component of lithium vapors obtained on the basis of potential curves calculated by 
the quantum-mechanical method are shown in Table 3 and can be calculated from the equations 

Ni (T). l0 T = 143.9 q- 0.0955 (T - -  1000) Pa.sr (2)  

% i ( T ) . 1 0 a = 6 4 7 . 5 q - 0 , 4 2 9 6 ( T - - 1 0 0 0 )  W/m-K (3)  

The error in approximating the data with these equations is less than 0.6%. 

The lithium cross sections o~ that were found agree well with the results of calcula- 
tions by Eq. (i). The difference between these results lies within the limits Of the 
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standard deviation of interpolations according to Eq. (I). The error of ~= when deter- 
mined from potential curves calculated by the quantum-mechanical method is roughly equal 
to the errors of the cross sections found from empirical data on the transport properties 
of alkali metal vapors. Thus, it is best to base determinations of the transport proper- 
ties of the atomic component of lithium vapors on the results of current quantum-mechanical 
calculations of the binding energy of lithium atoms. 

NOTATION 

T, absolute temperature; Psat, pressure on the saturation line; N, coefficient of 
= ~(~ ~)* absolute viscosity; %, thermal conductivity; oi , , collision cross section; Rcov~ 

covalent radius; U(r), potential binding energy of atoms at a distance r; ~, standard devia- 
tion of the value. The index 1 denotes the atomic component. 
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INTERACTION POTENTIALS AND COLLISION INTEGRALS 

FOR HYDROGEN AND ALKALI METAL ATOMS 

E. E. Shpil'rain and A. Ya. Polishchuk UDC 533.7+533.27 

Interaction potentials between hydrogen and alkali metal atoms have been calculated. 
Calculated values of collision integrals in the temperature range 700-1500~ are 
reported. 

i. The calculation of transport coefficients for a mixture of hydrogen and alkali 
metals is of great interest for various practical purposes. Ordinarily these calculations 
are based on the well-developed Chapman--Enskog method which gives expressions for the 
transport coefficients in the form of determinants whose elements are collision integrals. 
Thus, the problem of calculating transport coefficients is reduced to the calculation of 
collision integrals in terms of interaction potentials. 

The interaction potentials of particles separated by distances larger than their 
dimensions can be represented as the sum of an exchange part and a long-range part [i]. 
The long-range part has been thoroughly studied [i, 2], but calculations of the exchange 
part are quite difficult. The procedures presented in [3] for the interaction of identical 
alkali metal atoms, and in [4] when the ionization potentials of the atoms are very dif- 
ferent cannot be applied in our case, since the ionization energy of a hydrogen atom is 
larger than the ionization energy of an alkali metal atom, and the difference between them 
is of the same order of magnitude as the quantities themselves. 

2. We turn to the calculation of the exchange part of the interaction potential 
between hydrogen and alkali metal atoms.* 

Let ~ and ~s be the wave functions of the valence s electron in an alkali metal atom M 
in the absence and presence of an excited hydrogen atom. 
wave functions has the form 

The Schr~dinger equation for these 

- -  ~ Aw + vM'I* = EW, 
2 

I 
_ _L A ~  s + VMU2 "~ -6 V~ tF~ ---- E ~ S -  (1)  

2 

Here V M and VHS are the interaction potentials of a valence electron of atom M with its 
own atomic core and with a hydrogen atom, respectively; the latter depends on the total 
combined spin of the two-electron system. 

We multiply the first of Eqs. (I) by ~s, the second by ~, subtract one from the other, 
and integrate the result over a volume excluding the hydrogen atom. In this region where 
the valence electron of atom M is largely concentrated VH s = 0, ~=~s, and therefore we obtain 
for the exchange interaction 

*Another approach to this problem is presented in detail in [5]. 
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